

### E-SFP-BD-LX-55S

### BIDI SFP 1550nm-TX/1310nm-RX 20KM SMF Transceiver

#### **Features**

- Dual data-rate of 1.25Gbps/1.063Gbps operation
- 1550nm DFB laser and PIN photodetector for 20km transmission
- Compliant with SFP MSA and SFF-8472 with duplex SC receptacle
- Digital Diagnostic Monitoring: Internal Calibration or External Calibration
- Compatible with SONET OC-24-LR-1
- Compatible with RoHS
- +3.3V single power supply
- Operating case temperature: Standard: 0 to +70°C, Extended: -40 to +85°C

## **Applications**

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

### 1. Absolute Maximum Ratings

| Parameter           | Symbol | Min  | Max | Unit |
|---------------------|--------|------|-----|------|
| Supply Voltage      | Vcc    | -0.5 | 4.5 | V    |
| Storage Temperature | Ts     | -40  | +85 | °C   |
| Operating Humidity  | -      | 5    | 85  | %    |

## 2. Recommended Operating Conditions

|                      | Parameter              |          | Symbol | Min  | Typical | Max  | Unit |
|----------------------|------------------------|----------|--------|------|---------|------|------|
|                      | ating Case<br>perature | Standard | Tc     | 0    |         | +70  | °C   |
| Power Supply Voltage |                        | Vcc      | 3.13   | 3.3  | 3.47    | V    |      |
| Power Supply Current |                        | Icc      |        |      | 300     | mA   |      |
| Gigabit Ethernet     |                        |          |        | 1.25 |         | Chno |      |
| Data Rate            | Fiber Cha              | nnel     |        |      | 1.063   |      | Gbps |

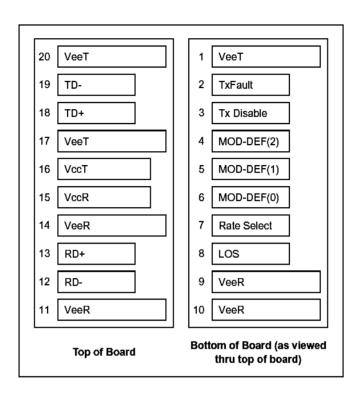


# 3. Optical and Electrical Characteristics

| Parai                             | meter                 | Symbol          | Min      | Typical | Max  | Unit | Notes |
|-----------------------------------|-----------------------|-----------------|----------|---------|------|------|-------|
|                                   |                       |                 | Transmit | ter     |      | ·    |       |
| Centre V                          | Vavelength            | λс              | 1480     | 1550    | 1580 | nm   |       |
| Spectral V                        | Vidth (RMS)           | Δλ              |          |         | 4    | nm   |       |
| Average C                         | Output Power          | Pout            | -9       |         | -3   | dBm  | 1     |
| Extinct                           | ion Ratio             | ER              | 9        |         |      | dB   |       |
|                                   | se/Fall Time<br>~80%) | tr/tf           |          |         | 0.26 | ns   |       |
| Data Input Sv                     | ving Differential     | V <sub>IN</sub> | 400      |         | 1800 | mV   | 2     |
| Input Differer                    | ntial Impedance       | Z <sub>IN</sub> | 90       | 100     | 110  | Ω    |       |
| TV Disable                        | Disable               |                 | 2.0      |         | Vcc  | V    |       |
| TX Disable                        | Enable                |                 | 0        |         | 0.8  | V    |       |
| TV Fault                          | Fault                 |                 | 2.0      |         | Vcc  | V    |       |
| TX Fault                          | Normal                |                 | 0        |         | 0.8  | V    |       |
|                                   |                       |                 | Receive  | ər      |      |      |       |
| Centre V                          | Vavelength            | λς              | 1260     | 1310    | 1360 | nm   |       |
| Receiver                          | Sensitivity           |                 |          |         | -23  | dBm  | 3     |
| Receive                           | r Overload            |                 | -3       |         |      | dBm  | 3     |
| LOS D                             | LOS De-Assert         |                 |          |         | -24  | dBm  |       |
| LOS Assert                        |                       | LOSA            | -35      |         |      | dBm  |       |
| LOS Hysteresis                    |                       |                 | 1        |         | 4    | dB   |       |
| Data Output Swing<br>Differential |                       | Vout            | 400      |         | 1800 | mV   | 4     |
|                                   | 00                    | High            | 2.0      |         | Vcc  | V    |       |
| L                                 | LOS                   |                 |          |         | 0.8  | V    |       |

### Notes:

- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated.
- 3. Measured with a PRBS 27-1 test pattern @1250Mbps, BER  $\leq 1 \times 10$ -12.
- 4. Internally AC-coupled.


## 4. Timing and Electrical

| Parameter                                          | Symbol             | Min | Typical | Ma<br>x | Unit |
|----------------------------------------------------|--------------------|-----|---------|---------|------|
| Tx Disable Negate Time                             | t_on               |     |         | 1       | ms   |
| Tx Disable Assert Time                             | t_off              |     |         | 10      | μs   |
| Time To Initialize, including Reset of Tx<br>Fault | t_init             |     |         | 300     | ms   |
| Tx Fault Assert Time                               | t_fault            |     |         | 100     | μs   |
| Tx Disable To Reset                                | t_reset            | 10  |         |         | μs   |
| LOS Assert Time                                    | t_loss_on          |     |         | 100     | μs   |
| LOS De-assert Time                                 | t_loss_off         |     |         | 100     | μs   |
| Serial ID Clock Rate                               | f_serial_cloc<br>k |     |         | 400     | KHz  |
| MOD_DEF (0:2)-High                                 | V <sub>H</sub>     | 2   |         | Vcc     | V    |



| MOD DEF (0:2)-Low | $V_L$ | 0.8 | V |
|-------------------|-------|-----|---|

### 5. Pin Definitions



# 6. Pin Descriptions

| Pin | Signal Name      | Description                  | Plug Seq. | Notes  |
|-----|------------------|------------------------------|-----------|--------|
| 1   | V <sub>EET</sub> | Transmitter Ground           | 1         |        |
| 2   | TX FAULT         | Transmitter Fault Indication | 3         | Note 1 |
| 3   | TX DISABLE       | Transmitter Disable          | 3         | Note 2 |
| 4   | MOD_DEF(2)       | SDA Serial Data Signal       | 3         | Note 3 |
| 5   | MOD_DEF(1)       | SCL Serial Clock Signal      | 3         | Note 3 |
| 6   | MOD_DEF(0)       | TTL Low                      | 3         | Note 3 |
| 7   | Rate Select      | Not Connected                | 3         |        |
| 8   | LOS              | Loss of Signal               | 3         | Note 4 |
| 9   | V <sub>EER</sub> | Receiver ground              | 1         |        |
| 10  | V <sub>EER</sub> | Receiver ground              | 1         |        |
| 11  | V <sub>EER</sub> | Receiver ground              | 1         |        |
| 12  | RD-              | Inv. Received Data Out       | 3         | Note 5 |
| 13  | RD+              | Received Data Out            | 3         | Note 5 |
| 14  | V <sub>EER</sub> | Receiver ground              | 1         |        |
| 15  | V <sub>CCR</sub> | Receiver Power Supply        | 2         |        |
| 16  | V <sub>CCT</sub> | Transmitter Power Supply     | 2         |        |
| 17  | V <sub>EET</sub> | Transmitter Ground           | 1         |        |
| 18  | TD+              | Transmit Data In             | 3         | Note 6 |
| 19  | TD-              | Inv. Transmit Data In        | 3         | Note 6 |
| 20  | V <sub>EET</sub> | Transmitter Ground           | 1         |        |



#### Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1) TX Fault is an open collector output, which should be pulled up with a  $4.7k\sim10k\Omega$  resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a  $4.7k\sim10k\Omega$  resistor. Its states are:

Low (0 to 0.8V): Transmitter on (>0.8V, < 2.0V): Undefined

High (2.0 to 3.465V): Transmitter Disabled
Open: Transmitter Disabled

3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a  $4.7k\sim10k\Omega$  resistor on the host board. The pull-up voltage shall be VccT or VccR.

Mod-Def 0 is grounded by the module to indicate that the module is present

Mod-Def 1 is the clock line of two wire serial interface for serial ID

Mod-Def 2 is the data line of two wire serial interface for serial ID

- 4) LOS is an open collector output, which should be pulled up with a  $4.7k\sim10k\Omega$  resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with  $100\Omega$  (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with  $100\Omega$  differential termination inside the module.